A Differential Privacy Mechanism Design Under Matrix-Valued Query
نویسندگان
چکیده
Traditionally, differential privacy mechanism design has been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to each element of the matrix, this method is often sub-optimal as it forfeits an opportunity to exploit the structural characteristics typically associated with matrix analysis. In this work, we consider the design of differential privacy mechanism specifically for a matrix-valued query function. The proposed solution is to utilize a matrix-variate noise, as opposed to the traditional scalar-valued noise. Particularly, we propose a novel differential privacy mechanism called the Matrix-Variate Gaussian (MVG) mechanism, which adds a matrix-valued noise drawn from a matrix-variate Gaussian distribution. We prove that the MVG mechanism preserves ( , δ)-differential privacy, and show that it allows the structural characteristics of the matrix-valued query function to naturally be exploited. Furthermore, due to the multi-dimensional nature of the MVG mechanism and the matrix-valued query, we introduce the concept of directional noise, which can be utilized to mitigate the impact the noise has on the utility of the query. Finally, we demonstrate the performance of the MVG mechanism and the advantages of directional noise using three matrix-valued queries on three privacy-sensitive datasets. We find that the MVG mechanism notably outperforms four previous state-of-the-art approaches, and provides comparable utility to the non-private baseline. Our work thus presents a promising prospect for both future research and implementation of differential privacy for matrix-valued query functions.
منابع مشابه
MVG Mechanism: Differential Privacy under Matrix-Valued Query
Differential privacy mechanism design has traditionally been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to each element of the matrix, this method is often suboptimal as it forfeits an opportunity to exploit the structural characteristics typically asso...
متن کاملLow-Rank Mechanism: Optimizing Batch Queries under Differential Privacy
Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result, such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the...
متن کاملEfficient Batch Query Answering Under Differential Privacy
Differential privacy is a rigorous privacy condition achieved by randomizing query answers. This paper develops efficient algorithms for answering multiple queries under differential privacy with low error. We pursue this goal by advancing a recent approach called the matrix mechanism, which generalizes standard differentially private mechanisms. This new mechanism works by first answering a di...
متن کاملThe Optimal Mechanism in Differential Privacy: Multidimensional Setting
We derive the optimal -differentially private mechanism for a general two-dimensional real-valued (histogram-like) query function under a utility-maximization (or cost-minimization) framework for the ` cost function. We show that the optimal noise probability distribution has a correlated multidimensional staircase-shaped probability density function. Compared with the Laplacian mechanism, we s...
متن کاملDesign of Policy-Aware Differentially Private Algorithms
Recent work has proposed a privacy framework, calledBlowfish, that generalizes differential privacy in order togenerate principled relaxations. Blowfish privacy defini-tions take as input an additional parameter called a policygraph, which specifies which properties about individualsshould be hidden from an adversary. An open question isto characterize when Blowfish priv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.10077 شماره
صفحات -
تاریخ انتشار 2018